
1 Sylows Theorem

1.1 Group Axioms

Definition 1.1.1: Group axioms

Let G = (G, ∗) be a group where G is a set and ∗ the group operation. Then, the following are true:

1. There exists an identity element 1G ∈ G such that g ∗ 1G = 1G ∗ g = g for all g ∈ G.

2. Every element g ∈ G has an inverse g−1 ∈ G such that g ∗ g−1 = 1G

3. The product elements in G is associative such that for a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

4. The product of two elements in G is commutative if and only if the group is abelian. (Ie. if a
group G is abelian then g ∗ q = q ∗ g for all g, q ∈ G)

1.2 Group Actions, Orbits, and Stabilizers

Definition 1.2.1: Group Actions

Let G be a group. A set S is a G-set if there is a function from G× S → S (which we write as g · s
for g ∈ G and s ∈ S) satisfying:

1. (gh) · s = g · (h · s) for all g, h ∈ G and s ∈, and

2. 1 · s = s for all s ∈ S

Definition 1.2.2: Orbits

Let G be a group and S be a set such that there exists a group action σ : G× S → S. The orbit of
an element s ∈ S is the set of all points s can be moved to:

Orb(s) = {g · x | g ∈ G}

Definition 1.2.3: Stabilizers

Let G be a gruop and S be a set such that there exists a group action σ : G× S → S. The stabilizer
of an element s ∈ S is the subgroup that s fixed:

Stab(g) = {g ∈ G | g · s = s}

Now with these two established we have

Theorem 1.1 (Orbit-Stabilizer). Let G be a finite group, S be any set that G acts on. Then for any
s ∈ S,

|G| = |Orb(s)| · |Stab(s)|

The proof of this theorem is omitted for sake of the project.
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1.3 Proof of Sylows Theorem

Lemma 1.2 (Lucas’s Lemma). Let p and m be integers such that p is prime and gcd(p,m) = 1.
Then (

pkm

pk

)
≡ m (mod p)

Once again, the proof is omitted for the sake of the project.

Theorem 1.3 (Sylows First1 Theorem). Given a group G of size pkm where p is a prime and
gcd(p,m) = 1 we have that G has a subgroup of size pk.

Proof. We start by defining a set of subsets Ω =
{
X ⊆ G | |X| = pk

}
. Next, we will define a group action

such that G acts on Ω by g ·X = {gx | x ∈ X}, noting that the map x 7→ gx is bijective and thus the size is
preserved between X and g · X.
If we take a look at the size of the set we just created, Ω, notice that by definition of Ω we are choosing
subsets of size pk from G which has size pkm. So,

|Ω| =

(
pkm

pk

)
≡ m (mod p)

with the congruence coming from Lemma (1.2).
Now since, we can split Ω into a disjoint union of orbits, the size of Ω must be the sum of the sizes of each
set in the disjoint union. Since |Ω| ≡ m (mod p) we know that one orbit of the action of G has a size that
is not a multiple of p since gcd(p,m) = 1. We will call this orbit O.
Now choose a set inside O, say α ∈ O. Then, the orbit of α must be O itself, G · α = O because the orbit of
an element in an orbit is the orbit itself. Applying the Orbit-Stabilizer Theorem (1.1) we can see that if Gα

is the stabilizer of α then,
|Gα| · |G · α| = pkm.

However, since pk ∤ |G · α|, we know that pk | |Gα|. We must now show that |Gα| = pk.
We start by considering some a ∈ α and the map G → G given by g 7→ ga for g ∈ G. This map is clearly
a bijection since we are able to multiply by a−1. Now if g ∈ Gα then ga ∈ α by definition of a stabilizer.
However, because this map was a bijection we know that |Gα| ≤ |α| (since ga is in some subset of α). But
|α| = pk so |Gα| ≤ pk and since pk | |Gα| we have pk ≤ |Gα|. Therfore |Gα| = pk and the stabilizer Gα is
the desired group.

1There are actually three theorems attributed to Sylow, and they’re all related!
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