

# 1 Sylows Theorem

## 1.1 Group Axioms

### Definition 1.1.1: Group axioms

Let  $G = (G, *)$  be a group where  $G$  is a set and  $*$  the group operation. Then, the following are true:

1. There exists an identity element  $1_G \in G$  such that  $g * 1_G = 1_G * g = g$  for all  $g \in G$ .
2. Every element  $g \in G$  has an inverse  $g^{-1} \in G$  such that  $g * g^{-1} = 1_G$
3. The product elements in  $G$  is associative such that for  $a, b, c \in G$ ,  $(a * b) * c = a * (b * c)$ .
4. The product of two elements in  $G$  is commutative if and only if the group is abelian. (Ie. if a group  $G$  is abelian then  $g * q = q * g$  for all  $g, q \in G$ )

## 1.2 Group Actions, Orbits, and Stabilizers

### Definition 1.2.1: Group Actions

Let  $G$  be a group. A set  $S$  is a  $G$ -set if there is a function from  $G \times S \rightarrow S$  (which we write as  $g \cdot s$  for  $g \in G$  and  $s \in S$ ) satisfying:

1.  $(gh) \cdot s = g \cdot (h \cdot s)$  for all  $g, h \in G$  and  $s \in S$ , and
2.  $1 \cdot s = s$  for all  $s \in S$

### Definition 1.2.2: Orbits

Let  $G$  be a group and  $S$  be a set such that there exists a group action  $\sigma : G \times S \rightarrow S$ . The **orbit** of an element  $s \in S$  is the set of all points  $s$  can be moved to:

$$\text{Orb}(s) = \{g \cdot s \mid g \in G\}$$

### Definition 1.2.3: Stabilizers

Let  $G$  be a group and  $S$  be a set such that there exists a group action  $\sigma : G \times S \rightarrow S$ . The **stabilizer** of an element  $s \in S$  is the *subgroup* that  $s$  fixed:

$$\text{Stab}(s) = \{g \in G \mid g \cdot s = s\}$$

Now with these two established we have

**Theorem 1.1** (Orbit-Stabilizer). *Let  $G$  be a finite group,  $S$  be any set that  $G$  acts on. Then for any  $s \in S$ ,*

$$|G| = |\text{Orb}(s)| \cdot |\text{Stab}(s)|$$

The proof of this theorem is omitted for sake of the project.

### 1.3 Proof of Sylows Theorem

**Lemma 1.2** (Lucas's Lemma). *Let  $p$  and  $m$  be integers such that  $p$  is prime and  $\gcd(p, m) = 1$ . Then*

$$\binom{p^k m}{p^k} \equiv m \pmod{p}$$

Once again, the proof is omitted for the sake of the project.

**Theorem 1.3** (Sylows First<sup>1</sup> Theorem). *Given a group  $G$  of size  $p^k m$  where  $p$  is a prime and  $\gcd(p, m) = 1$  we have that  $G$  has a subgroup of size  $p^k$ .*

*Proof.* We start by defining a set of subsets  $\Omega = \{X \subseteq G \mid |X| = p^k\}$ . Next, we will define a group action such that  $G$  acts on  $\Omega$  by  $g \cdot X = \{gx \mid x \in X\}$ , noting that the map  $x \mapsto gx$  is bijective and thus the size is preserved between  $X$  and  $g \cdot X$ .

If we take a look at the size of the set we just created,  $\Omega$ , notice that by definition of  $\Omega$  we are choosing subsets of size  $p^k$  from  $G$  which has size  $p^k m$ . So,

$$|\Omega| = \binom{p^k m}{p^k} \equiv m \pmod{p}$$

with the congruence coming from Lemma (1.2).

Now since, we can split  $\Omega$  into a disjoint union of orbits, the size of  $\Omega$  must be the sum of the sizes of each set in the disjoint union. Since  $|\Omega| \equiv m \pmod{p}$  we know that one orbit of the action of  $G$  has a size that is **not** a multiple of  $p$  since  $\gcd(p, m) = 1$ . We will call this orbit  $O$ .

Now choose a set inside  $O$ , say  $\alpha \in O$ . Then, the orbit of  $\alpha$  must be  $O$  itself,  $G \cdot \alpha = O$  because the orbit of an element in an orbit is the orbit itself. Applying the Orbit-Stabilizer Theorem (1.1) we can see that if  $G_\alpha$  is the stabilizer of  $\alpha$  then,

$$|G_\alpha| \cdot |G \cdot \alpha| = p^k m.$$

However, since  $p^k \nmid |G \cdot \alpha|$ , we know that  $p^k \mid |G_\alpha|$ . We must now show that  $|G_\alpha| = p^k$ .

We start by considering some  $a \in \alpha$  and the map  $G \rightarrow G$  given by  $g \mapsto ga$  for  $g \in G$ . This map is clearly a bijection since we are able to multiply by  $a^{-1}$ . Now if  $g \in G_\alpha$  then  $ga \in \alpha$  by definition of a stabilizer. However, because this map was a bijection we know that  $|G_\alpha| \leq |\alpha|$  (since  $ga$  is in some subset of  $\alpha$ ). But  $|\alpha| = p^k$  so  $|G_\alpha| \leq p^k$  and since  $p^k \mid |G_\alpha|$  we have  $p^k \leq |G_\alpha|$ . Therfore  $|G_\alpha| = p^k$  and the stabilizer  $G_\alpha$  is the desired group.  $\square$

<sup>1</sup>There are actually three theorems attributed to Sylow, and they're all related!