1 Sylows Theorem

1.1 Group Axioms

Definition 1.1.1: Group axioms

Let G = (G, %) be a group where G is a set and x the group operation. Then, the following are true:
1. There exists an identity element 1g € G such that gx 1g = 1g*xg =g for all g € G.
2. Every element g € G has an inverse g~ € G such that g* g~ ! = 1¢
3. The product elements in G is associative such that for a,b,c € G, (a*b) xc = a* (bx*c).

4. The product of two elements in G is commutative if and only if the group is abelian. (Te. if a
group G is abelian then g * ¢ = ¢ * g for all g,q € G)

1.2 Group Actions, Orbits, and Stabilizers

Definition 1.2.1: Group Actions

Let G be a group. A set S is a G-set if there is a function from G x S — S (which we write as g - s
for g € G and s € S) satisfying:

1. (gh)-s=g-(h-s) forall g,h € G and s €, and

2. 1-s=sforallse S

Definition 1.2.2: Orbits

Let G be a group and S be a set such that there exists a group action o : G x S — S. The orbit of
an element s € S is the set of all points s can be moved to:

Orb(s) ={g-z| g€ G}

Definition 1.2.3: Stabilizers

Let G be a gruop and S be a set such that there exists a group action o : G x S — S. The stabilizer
of an element s € S is the subgroup that s fixed:

Stab(g) ={g € G |g-s=s}

Now with these two established we have

Theorem 1.1 (Orbit-Stabilizer). Let G be a finite group, S be any set that G acts on. Then for any
se S,
|G| = [Ord(s)] - | Stab(s)]

The proof of this theorem is omitted for sake of the project.
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1.3 Proof of Sylows Theorem

Lemma 1.2 (Lucas’s Lemma). Let p and m be integers such that p is prime and ged(p,m) = 1.

Then
k
<p IT) =m (mod p)
p

Once again, the proof is omitted for the sake of the project.

Theorem 1.3 (Sylows First! Theorem). Given a group G of size p*m where p is a prime and
ged(p,m) = 1 we have that G has a subgroup of size p*.

Proof. We start by defining a set of subsets ) = {X CGE||X|= pk}. Next, we will define a group action
such that G acts on Q by g- X = {gx | x € X}, noting that the map x — gz is bijective and thus the size is
preserved between X and g- X.

If we take a look at the size of the set we just created, €2, notice that by definition of 2 we are choosing
subsets of size p¥ from G which has size p*m. So,

1] = (pp;n> =m (mod p)

with the congruence coming from Lemma (1.2).
Now since, we can split €2 into a disjoint union of orbits, the size of {2 must be the sum of the sizes of each
set in the disjoint union. Since |Q2] = m (mod p) we know that one orbit of the action of G has a size that
is not a multiple of p since ged(p, m) = 1. We will call this orbit O.
Now choose a set inside O, say a € O. Then, the orbit of o must be O itself, G - @ = O because the orbit of
an element in an orbit is the orbit itself. Applying the Orbit-Stabilizer Theorem (1.1) we can see that if G,
is the stabilizer of a then,

Gl G - a] = phm.

However, since p* { |G - a|, we know that p* | |G|. We must now show that |G| = p*.

We start by considering some a € « and the map G — G given by g — ga for g € G. This map is clearly
a bijection since we are able to multiply by a=!'. Now if g € G, then ga € a by definition of a stabilizer.
However, because this map was a bijection we know that |G| < || (since ga is in some subset of «). But
la] = p* 50 |Gal < p* and since p* | |G| we have p* < |G,|. Therfore |G| = p* and the stabilizer G, is

the desired group. O

IThere are actually three theorems attributed to Sylow, and they’re all related!
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